Lesson 9: Introduction to Inequalities

Opening Exercise - [adapted from MARS Evaluating Statements About Number Operations]

1. Abigail is thinking of a number.

A. Could Abigail be thinking of 8? Explain your answer.

No

$$
8-3=5
$$

B. What numbers could she be thinking of? Describe them all.
Any number less than

\square

C. Which of the following means the same as Abigail's statement? Circle all that apply.

$$
x-3<4 \quad 3-x<4 \quad x-3>4 \quad 3-x>4
$$

Here are some statements expressed in words and in algebra. The last column explains when the statements are true. Complete the table. An example is shown in the first row.

	Statenetin Woors	Staemetifingebra	What unbes would mate the
${ }_{\text {sx }}$		$x+3=7$	
2.	When I add four to my number the answer is	$x+4>6$	Anything larger than 2
3.	- Wher montipun yumber	$6 x<9$	Anything less thian $\frac{3}{2}$
	when I divide my number by 3, the answer is 'less than 4	$\frac{x}{3}<4$	Anything less than 12
	When I subtract My number from 7. the answer is greater than 6.	$\frac{-7-x>6}{\frac{-x}{-1}-\frac{1}{-1}}$	Anything less than 1

Graphing Inequalities

Since these inequalities are with one variable, we can graph their solution on a number line. The example on the previous page would be a single dot on 4 as shown below.

6. Which of the graphs below show the solutions to Abigail's number from the Opening Exercise? Explain your thinking. Then explain what is wrong with the other graphs.
A.

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	9	10

B.

C.

D.

Practice Graphing Inequalities

For each inequality below, graph the solution on the number line.

7. $x>-6$														
$\stackrel{1}{-7}$	(1)	1	1	1	1	1	1	1	1	1	1	1		
	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
8. $x \geq-6$														
$\longleftarrow \quad 1$	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
9. $x<-6$														
\leftarrow 10 1-1														
-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
10. $x \leq-6$														
$\longleftarrow \quad 1$	1	1	1	1	1	1	1	1	1	1	1	1	1	
-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
11. $x \leq 0$														
$\longleftarrow 1$			1	1	1	1		1	1	1	1	1		
$\leftarrow-7$	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
12. $-1<x<2 \quad-1<x \quad \ll 2$														
$\leftarrow 1$		1	1	,	1	(1)	1	1	1	1	1	1	1	1
-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
13. $x>2$ or $x<-1$														
-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7

Interval Notation

Besides drawing a number line showing all possible solutions, mathematicians use interval notation to describe the set of solutions.

For example, $x<-5$ is written $(-\infty,-5)$. On a number line it would like this:

14. How do you think $x \leq-5$ would be written?

$$
(-0,-5
$$

15. What would $[5,6]$ look like as an inequality?

$$
5 \leq x \leq 6
$$

Match each inequality below with its interval notation.
16. $3<x \leq 4$

17. $3<x$
D
18. $x \leq 4$

19. $x<3$ or $x>4$

$(-\infty, 3)(4, \infty)$

Below are the inequalities from the previous page. Write the interval notation that describes the solutions.
20. $x>-6$
21. $x \geq-6$
22. $x<-6$
23. $x \leq-6$
24. $x \leq 0$
25. $-1<x<2$
26. $x>2$ or $x<-1$

Exploration - Card Matching

You will need: a set of Written Solution cards and Description cards, glue stick, scissors

Directions: Cut out the cards and match them to the given inequalities in the table below. Then glue the cards into the appropriate spaces. Finally draw in the correct graph for each solution.

	Inequality Statement	Description	Written Solution	Graph				
27.	$10+x>10$			-10	-5	0	5	10
28.	$x+10<x$			-10	-5	0	5	10
29.	$10 x>x$			-10	-5	0	5	10
30.	$\frac{10}{x}<10$			-10	-5	0	5	10
31.	$x-2<8$			-10	-5	0	5	10

Lesson Summary

Graphing Inequalities on a Number Line

Homework Problem Set

1. Shamara is thinking of a number.
A. Could Shamara be thinking of 8?

Explain.
B. How is Sharmara's statement written using algebra?
C. Graph the solution to possibilities for Sharmara's number and give the solution in interval notation.

2. Benjamin is also thinking of a number.

A. Write Benjamin's statement using algebra.
B. Graph the solution to possibilities for Benjamin's number and give the solution in interval notation.

Draw a graph for each inequality and give the solution in interval notation. [source: Kuta software]

Write an inequality for each graph and give the solution in interval notation. [source: Kuta software]

11.	12.
13.	14.
15.	16.
	$-7-6-5\left[\begin{array}{lllllllllll} & -4 & -3 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 7 \end{array}\right.$

Use mental math to solve and graph each inequality. Then and give the solution in interval notation.

17. $-12>x-7$	18. $-1+r \geq 4$
-12 -10 -8 -6 -4 -2	
19. $n-6 \leq-14$	20. $b-7<-12$
$\begin{array}{lllll}-10 & -8 & -6 & -4 & -2\end{array}$	$\begin{array}{lllllllllllll}-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3\end{array}$
21. $a-17-16$	22. $15+x \leq 0$
$\begin{array}{lllllllllllll}-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5\end{array}$	$\begin{array}{lllllll}-22 & -20 & -18 & -16 & -14 & -12\end{array}$

	Inequality Statement	Simplified Inequality Statement	Interval Notation of Solution	Graph of Solution				
29.	$10-x>10$			-10	-5	0	5	10
30.	$x-10>x$			-10	-5	0	5	10
31.	$2 x>10$			-10	- -	0	5	10
32.	$\frac{x}{5}<2$			-10	-5	0	5	10
33.	$\frac{x}{2}>5$			-10	-5	0	5	10

