Lesson 10: Solving Inequalities

Opening Exercise

1. Find the solution set to each inequality. Express the solution graphically on the number line and give the solution in interval notation.
A. $x+4 \leq 7$
$x \leqslant 3$
B. $\begin{aligned} & \frac{m}{3}+8>9 \\ &-8 \\ &-8\end{aligned}$
$\frac{m}{3}>1$
$m>3$

c. | $8 y+4<7 y-2$ |
| :---: |
| $-7 y=-7 y$ |
| $y+4<-2$ |
| $-4<-4$ |
| $y<-6$ |

D. $6(x-5) \geq 30$
$6 x-30 \geq 30$ +30 r 30
$\frac{6 x}{6} \geq \frac{60}{6}$
$x \geq 10$
E. $\quad 4(x-3)>2(x-2)$

$$
4<x
$$

$$
x>4
$$

$\stackrel{\leftarrow}{4}$

2. Stephanie says, "So far we have the following rules for inequalities:

$$
\text { If } \boldsymbol{A}>\boldsymbol{B} \text {, then } \boldsymbol{A}+\boldsymbol{c}>\boldsymbol{B}+\boldsymbol{c} \text { for any real number } \boldsymbol{c} \text {. }
$$

If $\boldsymbol{A}>\boldsymbol{B}$, then $\boldsymbol{k} \boldsymbol{A}>\boldsymbol{k} \boldsymbol{B}$ for any positive real number $k . "$

Explain to your partner what Stephanie means by these statements. Be prepared to share out with the class.

Stephanie is quite clear in her rules that you cannot multiply by a negative number. Let's see what happens if we do multiply by a -1 with the inequality $5-C>2$.

3. Find one number that works for the first one. Does it work for the second one?

$$
\begin{gathered}
5-c>2 \\
5-2>2 \\
3>2
\end{gathered}
$$

$$
-5+C>-2
$$

4. A. Let's look at why this happens. If we choose two numbers on the number line, let's say 2 and 4 and mark them. We can see that $2<4$.

B. Now multiply our two numbers by -1 and mark these new numbers on the number line. You should now see that $-4<-2$. What does multiplying by -1 do to our inequality?

The Properties of Inequalities

- Addition property of inequality: If $A>B$, then $A+c>B+c$ for any real number c.
- Multiplication property of inequality: If $A>B$, then $k A>k B$ for any positive real number k.

5. Use the properties of inequality to show that each of the following is true for any real numbers p and q.
A. If $p \geq q$, then $-p \leq-q$.
B. If $p<q$, then $-5 p>-5 q$.
6. Based on the results from Exercises 4 and 5, how might we expand the multiplication property of inequality?

- Multiplication property of inequality: If $A>B$, then $k A>k B$ for any positive real number k.
- Multiplication property of inequality: If $A>B$, then \qquad for any negative real number k.

7. Find the solution set to each inequality. Express the solution graphically on a number line.
A. $\frac{-2 f}{-2}<\frac{-16}{-2}$ $f>8$
B. $-\frac{x}{12} \leq \frac{1}{4}$
$x \geq \frac{1}{4}(-12)$
$x \geq-3$
C. $\begin{array}{r}6-a \geq 15 \\ -6\end{array}$
$\frac{-a}{-1} \geq 9$
$a \leq-9$
$a \leq-9$
D. $-3(2 x+4)>0$
$-6 x-12>0$
$+12+12$
$-6 x^{>}>12$
$x<-2$

Lesson Summary

The Properties of Inequalities

- Addition property of inequality: If $A>B$, then $A+c>B+c$ for any real number c.
- Multiplication property of inequality: If $A>B$, then $k A>k B$ for any positive real number k.

$$
\text { If } A>B \text {, then } k A<k B \text { for any negative real number } k \text {. }
$$

Homework Problem Set

Find the solution set to each inequality. Express the solution graphically on the number line and give the solution in interval notation.

1. $2 x<10$

2. $-15 x \geq-45$

3. $\frac{2}{3} x \neq \frac{1}{2}+2$

4. $-5(x-1) \geq 10$

5. $13 x<9(1-x)$

6. Solve $-\frac{x}{16}+1 \geq-\frac{5 x}{2}$, for x without multiplying by a negative number. Then, solve by multiplying on both sides by -16 .
7. Lisa brought half of her savings to the bakery and bought 12 croissants for $\$ 14.20$. The amount of money she brings home with her is more than $\$ 2.00$. Use an inequality to find how much money she had in her savings before going to the bakery. (Write the inequality that represents the situation, and solve it.)
8. Solve $-18-16 t>-6-100 t$, for t in two different ways: first without ever multiplying on both sides by a negative number and then by first multiplying on both sides by $-\frac{1}{2}$ or dividing by -2 .
