\qquad Date: \qquad Period: \qquad

3.1.1-3.1.7 NOTES: Graphs, Tables, and Rules

There are 4 ways we have been interpreting data:

1) \qquad
2) \qquad
3) \qquad
4) \qquad

TABLES, GRAPHS \& RULES	There are 4 ways we have been interpreting data: 1) \qquad 2) \qquad 3) \qquad 4) \qquad
FUNCTIONS \& INPUT/OUTPUT	A function is a \qquad that takes \qquad values and produces exactly one \qquad value.
Independent vs. Dependent Variables	When one quantity (such as tree height) \qquad another (such as years), it is called a VARIABLE. That means its value is determined by the value of another variable. If a quantity, such as time, does not depend on another variable, it is referred to as the \qquad VARIABLE, which is graphed on the x -axis.
Types of Graphs	

Example 4 Make an $x \rightarrow y$ table for the graph at right, then write a rule for the table.	X	y	RULE:
Example 5 Use the graph to write a rule and find the input value for an output of -10.			
Example 6 Write a rule for the number of squares in figure x. Fig 1 Fig 2 Fig 3			

