\qquad Date: \qquad Per: \qquad \# \qquad

In Chapter 6 you learned that you can create similar figures by using dilations. Today you will investigate what happens to the angles in a figure when you enlarge or reduce the figure to create a similar figure.

9-39. ANGLES IN SIMILAR FIGURES

a. Using a sheet of graph paper and a straightedge, graph the quadrilateral $M(0,3), N(4,0), P(2,-2), Q(-2,1)$.
b. Enlarge the quadrilateral by a scale factor of 2 .
c. What do you notice about side MN and side $\mathrm{M}^{\prime} \mathrm{N}^{\prime}$? Explain.
d. What can you say about $\angle \mathrm{M}$ and $\angle \mathrm{M}^{\prime}$? Explain your reasoning. Hint:
 Extend sides MN and QM.
e. Remember that a conjecture is an inference or judgment based on incomplete evidence. Based on your work in this problem so far, make a conjecture about the angles in similar figures.
f. Test your conjecture in part (e) using a figure of your own design and a different scale factor. Each team member should create a different figure. Compare your work with your teammates' work. Does your conjecture seem to work always, sometimes, or never?

9-40. Imagine that two pairs of corresponding angles in two triangles are of equal measure. What could you then conclude about the third set of angles? Justify your answer and draw a diagram.
They're also the
same.

9-41. Use your conjecture from part (e) of problem 9-39 along with your work from problem 9-40 to explain how you can use the angles in a pair of triangles to determine if they are similar. Be sure to include how many angles you need and what needs to be true about them.

9-42. The relationship in the previous problem is called Angle Angle
Similarity and is written AA~. The symbol ~ means "similarity" or "is similar to." In the figure at right, is $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDC}$ (that is, is $\triangle \mathrm{ABC}$ similar to $\triangle E D C)$? Explain your reasoning.

Yes, $A A \sim$

9-43. Eleanor and John were working on a geometry problem together.
They knew that in the figure below, line m is parallel to side $B C$. They wanted to find the side lengths of each triangle. First they decided that they needed to show that $\triangle A E D \sim \triangle A B C$.

Eleanor said, "This is easy. We have parallel lines, so the triangles are similar by AA~."
"Hold on a minute!" John replied, "Which angles are equal?"
a. Using the diagram at right, name the pairs of equal angles Eleanor sees. Why are they equal?
b. Are the triangles ($\triangle \mathrm{AED}$ and $\triangle \mathrm{ABC}$) similar? Explain.

$$
\text { Yes, } A A \sim
$$

c. Now that John sees how the triangles are similar, he suggests redrawing them separately as shown at right. "Look," he says, "Now we just write a proportion." He suggests the following equation:

$$
\frac{3}{3+5}=\frac{x}{x+8}
$$

Explain how John came up with this equation.

d. Solve the proportion equation in part (c) for x and check you answer.

$$
\begin{array}{lll}
\frac{3}{8}=\frac{x}{x+8} & 8 x=3(x+8) \\
8 x=3 x+24 \\
-3 x=-3 x
\end{array} \quad \begin{aligned}
& 5 x=24 \\
& x=\frac{24}{5}
\end{aligned}
$$

9-45. $\triangle A B C$ is similar to $\triangle D E F$.
a. Find the scale factor from $\quad \triangle A B C$ to $\triangle D E F$.
$\frac{\text { new }}{\text { original }}=\frac{15}{3}=5$
b. Find x .

$$
x=\frac{385}{5}=7.7
$$

c. Find y.
$y=8.5=40$

9-49. Use what you know about the angles in a triangle to find x in each diagram below. Show all work. Then classify each triangle as acute, right, or obtuse.

LESSON SUMMARY

